Long Term Follow-Up Study on Morbidity and Mortality; Cardiac Rehabilitation Patients

Helen Graham, PhD, RN-BC, CNS, FAACVPR, Univ. of Colorado CO. SP.
Haeok Lee, PhD, RN University Massachusetts,
Bonnie Sanderson, PhD, RN, FAACVPR, Auburn University
Andrew Lac, PhD, Univ. of Colorado CO. SP.
September 09 2016
Long Term Outcome Comparison
Cardiac Rehab (CR) and Non-CR (NCR) Patients
Literature Review: Morbidity and Mortality Studies Related to CRII Participation

- Long-Term Outcome Studies 12 months (Lewin & Doherty, 2013)
- MI patients 20% reduction for all-cause mortality (West, Jones, & Henderson, 2013)
- CR participation associated with lower risk of re-infarction (OR 0.53) (Lewin & Doherty, 2013)
- MI & CABG pts reduction in cardiovascular mortality (RR .074) & risk hospital admission (RR 0.82) (Anderson, et al., 2015)
- Literature findings for mortality & morbidity inconsistent (Lewin and Doherty, 2013)
- Trials, meta-analysis, & systemic reviews are dated (Oldridge, Guyatt, & Fisher, 1988; West, Jones, & Henderson, 2012).
- More studies with intervention & comparison groups needed
Research Question?

Would MI and CABG patients who participated in 8 or more CRII sessions following a cardiac event have better long term health related outcomes in terms of decreased morbidity and mortality?
Cardiac Rehab II Program

2001-2003

- OP CRII on-site tertiary urban based hospital 350 plus beds
- Majority of Referrals from CV Surgeons & CR Phase I
- 28-40 IEs per month.
- Average 40-50 patients visits Mon., Wed., & Fri.
- Average total number CRII visits – 20/per patient.
- Staff – MD, RNs, ES, Techs, Dietetic Interns, Spiritual Care & Behavioral Health, Hospital Volunteer
- Prescribed Exercise & Education:
 - Education includes: Nutrition, Exercise, Medications, Stress Management, CAD Interventions, Smoking Cessation, lipid control
METHODOLOGY

- **Study Design** – Retrospective comparative study

- **Setting** – Rocky Mountain Region – Hospital & CRII Program are part of a large multi-state health care organization

- **Sample** - Consecutive Sampling (N=361) CR (n=188) and Non-CR (n=173) patients hospitalized for CABG, MI with Stent &/or PTCA
Intervention- CRII

- Referral from CRI & scheduled prior to hospital D/C
- 55 mins warm-ups, aerobic, resistance training, cool downs & 5 mins relaxation training & “joke”/day
- Education – group context during exercise (lecture & video)
- At D/C referred to off-site CR III, YMCA, Gym, or home based
Methodology

- **Data Collection** - Record review using hospital Electronic Medical Records (EMR) and State Department of Public Health & Environment

- **Record Review** –
 - Subject list – Patients admitted Nov. 2001-Feb. 2003
 - **Records**
 - Mortality – State Health Dec 2001-Dec 2015
 - Data Abstraction – Jan 2016-Feb 2016
Statistical Analysis

- Binary Logistic Regression & Survival Analysis
- Predictive Model – covariates
 - Gender
 - Age at cardiac event
 - Prior history of heart disease
 - Myocardial Infarction
 - CABG
 - Stent
 - PTCA
 - Intervention - Cardiac Rehabilitation
RESULTS

- N=361 patients- CR 52% (n=188) & 48% NCR (n=173)
- Male 72% (n=259) Female 28% (n=102)
- Age Range 38 y.o.-91 y.o.
- Mean age - 68 y.o.
- Prior History 33%
- Number of sessions range 8-36/per patient
Outcome Results for CR Participants

- 28% were readmitted for a cardiac event (5-10 year following index cardiac event)
- 34% deceased (1-13 yrs. following index cardiac event)
Morbidity Outcome Results

CRII participants had a 0.48 odds ratio ($p = .005$) of being readmitted for a subsequent cardiac event compared with patients who did not receive the intervention of CRII.
Mortality Outcome Results

CRII participants had a 0.22 odds ratio ($p < .001$) of subsequently being deceased compared to those who did not receive the intervention of CRII.
Predicting Hospital Readmission for Cardiac Event

Table 1

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Log Odds</th>
<th>Wald Test</th>
<th>Ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>-0.26</td>
<td>0.45</td>
<td>0.77</td>
<td>.502</td>
</tr>
<tr>
<td>Prior history of heart disease</td>
<td>0.35</td>
<td>0.92</td>
<td>1.41</td>
<td>.338</td>
</tr>
<tr>
<td>Age at cardiac event</td>
<td>0.01</td>
<td>0.12</td>
<td>1.01</td>
<td>.731</td>
</tr>
<tr>
<td>Myocardial infraction</td>
<td>0.32</td>
<td>0.42</td>
<td>1.38</td>
<td>.518</td>
</tr>
<tr>
<td>CABG</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.99</td>
<td>.981</td>
</tr>
<tr>
<td>Stent</td>
<td>0.71</td>
<td>0.67</td>
<td>2.02</td>
<td>.413</td>
</tr>
<tr>
<td>PTCA</td>
<td>-0.85</td>
<td>0.98</td>
<td>0.43</td>
<td>.322</td>
</tr>
<tr>
<td>Intervention</td>
<td>-0.74</td>
<td>4.36</td>
<td>0.48</td>
<td>.037</td>
</tr>
</tbody>
</table>

Note. Reported are adjusted odds ratios (AOR), after controlling for all other predictors in the model.
Predicting Mortality

Table 2
Logistic Regression: Predicting Death

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Log Odds</th>
<th>Wald test</th>
<th>Adjusted Odds</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>0.17</td>
<td>0.32</td>
<td>1.19</td>
<td>.574</td>
</tr>
<tr>
<td>Prior history of heart disease</td>
<td>0.54</td>
<td>3.92</td>
<td>1.72</td>
<td>.048</td>
</tr>
<tr>
<td>Age at cardiac event</td>
<td>0.09</td>
<td>40.51</td>
<td>1.09</td>
<td>< .001</td>
</tr>
<tr>
<td>Myocardial infraction</td>
<td>-0.75</td>
<td>2.87</td>
<td>0.47</td>
<td>.090</td>
</tr>
<tr>
<td>CABG</td>
<td>-0.19</td>
<td>0.16</td>
<td>0.83</td>
<td>.689</td>
</tr>
<tr>
<td>Stent</td>
<td>-0.33</td>
<td>0.32</td>
<td>0.72</td>
<td>.574</td>
</tr>
<tr>
<td>PTCA</td>
<td>-0.46</td>
<td>0.65</td>
<td>0.63</td>
<td>.419</td>
</tr>
<tr>
<td>Intervention</td>
<td>-1.53</td>
<td>26.16</td>
<td>0.22</td>
<td>< .001</td>
</tr>
</tbody>
</table>

Note. Reported are adjusted odds ratios (AOR), after controlling for all other predictors in the model.
Table 3
Survival Analysis: Predicting Death Hazard (Event) Variability Across Years

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Log Hazards</th>
<th>Wald test</th>
<th>Adjusted Hazards Ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>0.06</td>
<td>0.01</td>
<td>1.01</td>
<td>.975</td>
</tr>
<tr>
<td>Prior history of heart disease</td>
<td>0.39</td>
<td>4.51</td>
<td>1.48</td>
<td>.034</td>
</tr>
<tr>
<td>Age at cardiac event</td>
<td>0.06</td>
<td>47.95</td>
<td>1.07</td>
<td>< .001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>-0.56</td>
<td>2.87</td>
<td>0.57</td>
<td>.090</td>
</tr>
<tr>
<td>CABG</td>
<td>-0.36</td>
<td>1.15</td>
<td>0.70</td>
<td>.283</td>
</tr>
<tr>
<td>Stent</td>
<td>-0.34</td>
<td>0.68</td>
<td>0.71</td>
<td>.410</td>
</tr>
<tr>
<td>PTCA</td>
<td>-0.34</td>
<td>0.79</td>
<td>0.71</td>
<td>.374</td>
</tr>
<tr>
<td>Intervention</td>
<td>-1.02</td>
<td>25.71</td>
<td>0.36</td>
<td>< .001</td>
</tr>
</tbody>
</table>

Note. Reported are adjusted hazards ratios, after controlling for all other predictors in the model.
Survival Probability – All Participants
Survival Analysis

- 3 years post event - 93% survival
- 6 years post event - 87% survival
- 9 years post event - 80% survival
- 12 years post event - 74% survival
Long Term Survival CR and Non-CR

[Graph showing survival probability over years after a cardiac event for two groups: treatment and control.]
Results

- Intervention of CRII compared to no CRII shows increased long-term individual survival

- Contributing factors to mortality include:
 - Previous history of heart disease
 - Older age at the occurrence of the cardiac event
 - No CRII Intervention
Summary of Findings

The CRII group exhibited a higher survival trajectory than the control group, with this difference becoming more pronounced with passage of time.

Individuals within the CRII group were also less likely to encounter a subsequent cardiac event following the index hospital admission.
References

Thank you for attending.

Please take a moment to rate this session in the mobile app.