Exercise Training Intensity based on a Maximal Exercise Test is Associated with Greater Gains in Functional Capacity during Cardiac Rehabilitation

Allison N. Schley, BS
Clinton A. Brawner, PhD
Steven J. Keteyian, PhD
Division of Cardiology, Henry Ford Hospital
September 9, 2016
Background

• Exercise capacity is inversely associated with clinical outcomes in patients with cardiovascular disease (CVD)
 • Each 1 MET increase in exercise capacity is associated with a 15% decrease in all-cause mortality. (Keteyian, et al. 2008)
 • Patients exercising below 3.5 metabolic equivalents of task (METs) upon completion of cardiac rehabilitation (CR) represent a higher risk group with 1 and 3 year event rates of ≥7% and ≥18%, respectively (Brawner, et al. 2016)

• Improvements in exercise capacity are, in part, based on exercise intensity
Background

• Despite the recommendations to perform maximal exercise testing to guide exercise intensity in patients enrolled in CR, controversy still remains regarding practicality and necessity for such testing. (ACSM 2010; Balady, et al. 2007)

• Because of this, many programs utilize ratings of perceived exertion (RPE) alone
Exercise Testing in Patients With Heart Disease Who Participate in Exercise Training

POINT: High Quality or Just Average—The Need for Exercise Testing Before Cardiac Rehabilitation

Larry F. Hamm, PhD, ACSM-PD¹

COUNTERPOINT: All Patients Do Not Need an Exercise Test Before Starting Cardiac Rehabilitation

Timothy R. McConnell, PhD, ACSM-PD¹
Purpose

• Compare the change in exercise training workload (METs) during CR.
 • RPE alone versus target heart rate range (computed based on completion of a symptom limited exercise test)
Methods

• Patients participating in the Henry Ford Hospital CR program between 2013-2015 who completed ≥9 sessions

• 2 groups- Exercise guided by:
 • Target heart rate range from an exercise test
 • Set at 60-80% heart rate reserve
 • RPE alone
 • No exercise test
 • 11-14 on 6-20 Borg scale
Methods

• Absolute and % change in METs were calculated and used to define submaximal exercise training workload
 • Treadmill workloads at the start and exit from CR
 • Start: average of METs on sessions 2 and 3
 • Exit: average of METs on last 2 sessions

• Multiple linear regression was used to calculate change in METs adjusted for:
 • Age
 • Sex
 • METs at the start of CR
 • Number of CR visits
Demographics

<table>
<thead>
<tr>
<th></th>
<th>Total (n= 809)</th>
<th>THRR (n= 308)</th>
<th>RPE only (n= 501)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>64 (48, 76)</td>
<td>65 (49, 77)</td>
<td>61 (47, 74)*</td>
</tr>
<tr>
<td>Women</td>
<td>35%</td>
<td>33%</td>
<td>36%</td>
</tr>
<tr>
<td>Primary Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABG</td>
<td>18%</td>
<td>20%</td>
<td>39%</td>
</tr>
<tr>
<td>MI (no CABG)</td>
<td>38%</td>
<td>37%</td>
<td>39%</td>
</tr>
<tr>
<td>PCI (no MI or CABG)</td>
<td>14%</td>
<td>13%</td>
<td>15%</td>
</tr>
<tr>
<td>Valve only</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Heart failure only</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Medical therapy</td>
<td>9%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Total Visits</td>
<td>24 (12, 36)</td>
<td>24 (12, 36)</td>
<td>24(12,36)</td>
</tr>
<tr>
<td>Start METs</td>
<td>2.5 (1.8, 3.9)</td>
<td>2.4 (1.8, 3.4)</td>
<td>2.9 (2.1, 4.3)</td>
</tr>
</tbody>
</table>

Data are median (10th, 90th percentile) or % of group

*P<.05, THRR vs. RPE only
Results

MET training level upon entry and exit (unadjusted)

- **RPE (n=501)**
 - Entry: 2.5
 - Exit: 3.7

- **THRR (n=308)**
 - Entry: 3.1
 - Exit: 4.9

*P<0.05 within group
Results

Change in MET Training Level during CR

- RPE (n=501)
- THRR (n=308)

*p<0.05 (within group)
**p<0.001 (between groups)

Adjusted for age, sex, METs at the start of CR, Number of CR visits
Clinical Implications

• Higher exercise training workloads upon completion of CR associated with lower risk for all-cause mortality (Brawner, et al. 2016)

• Our data suggests that exercise intensity guided by THRR is associated with greater exercise training workloads
 • This requires a symptom-limited exercise test
 • There are challenges with getting an exercise test ordered for a CR patient

• No need to delay CR start to obtain exercise test
 • For each day after D/C a patient doesn’t begin rehab, there is a ~1% decrease in participation (Pack, et al. 2013)
Limitations

• Future work is needed to confirm these findings in other centers and other populations
• Retrospective study
• Other important co-variates may need to be considered in adjusted analysis
Conclusion

• Submaximal exercise training workloads significantly improved in both the THRR and RPE groups

• Improvement in exercise training was 55% greater among CR patients who guided exercise training using a target heart rate range derived from a symptom limited exercise test
Thank you for attending.

Please take a moment to rate this session in the mobile app.