Discordance Between Change in Estimated MET during Supervised Exercise Training and Change in Peak Oxygen Uptake

Robert B. Berry, Steven J. Keteyian, Matthew A. Saval, Clinton A. Brawner
Division of Cardiovascular Medicine
Henry Ford Hospital and Medical Group
Detroit, Michigan
Disclosures

- No external funding was obtained for this analysis.
- The authors have not relevant conflicts.
Introduction

- Change in metabolic equivalent of task (MET), estimated from exercise training workloads during supervised exercise training (SET), is an accepted outcome measure for cardiac rehabilitation programs.
Introduction

- However, it is not clear how well change in estimated METs during SET correlates to more accurate measures of changes in exercise capacity.
Purpose

- Compare the change in METs estimated from SET workloads to exercise capacity based on measured peak oxygen uptake (VO$_2$) and the 6 minute walk test distance (6MWD).
Methods

- Secondary analysis of data from HF-ACTION trial
 - Patients with chronic NYHA class II-IV heart failure (EF≤40%)
 - Data obtained from NIH BioLINCC
- Analysis limited to subjects in the exercise training arm
- Exercise tests at baseline and 3 mo
 - Cardiopulmonary exercise test (CPET) on a treadmill
 - 6 Minute Walk test
Methods (continued)

- <3.5 mo between randomization to 3 mo CPET
- Analysis limited to SET sessions completed before 3 mo CPET
- ≥12 SET sessions completed
- SET METs calculated for treadmill exercise only
 - ACSM equation for walking
 - Training MET at start = mean of visits 2 & 3
 - Training MET at 3 mo = mean of last 2 visits
Demographics at Baseline (n= 357)

- Age= 59±11 years
- Women= 31%
- NYHA Class
 - II= 70%
 - III/IV= 30%
- Race (white)= 64%
- Ischemic etiology= 52%
- Body mass index= 30±6 kg·m⁻²
- Ejection fraction= 25±7%
- Number of SET visits = 28 ± 6
Results: Change in Exercise Training METs vs. Change in Peak VO$_2$ (n= 357)

- **Exercise Training METs**
 - Start= 3.0 ± 0.9
 - 3 mo= 3.7 ± 1.2
 - % change= 29 ± 29

- **Peak VO$_2$ (mL/kg/min)**
 - Start= 15.4 ± 4.5
 - 3 mo= 16.5 ± 4.8
 - % change= 8 ± 18

- **Measured Peak METs**
 - Start= 4.4 ± 1.3
 - 3 mo= 4.7 ± 1.4
 - % change= 8 ± 18

R= 0.12
P= 0.02
SEE= 18%
Results: Change in Exercise Training METs vs. Change Exercise Test Duration (n= 352)

Exercise Training METs
- Start= 2.9 ± 0.9
- 3 mo= 3.7 ± 1.2
- % change= 29 ± 29

Exercise Duration (min)
- Start= 10.5 ± 3.7
- 3 mo= 12.9 ± 4.2
- % change= 28 ± 37

R = 0.24
P < 0.001
SEE = 36%
Results: Change in Exercise Training METs vs. Change 6 Minute Walk Distance (n=357)

Exercise Training METs
- Start = 3.0 ± 0.9
- 3 mo = 3.7 ± 1.2
- % change = 29 ± 29

6 Minute Walk (meters)
- Start = 384 ± 90
- 3 mo = 410 ± 97
- % change = 26 ± 67
Results: Subgroup of subjects with ≥ 30 SET visits (n= 168)

- SET METs vs. peak VO$_2$
 - $R= 0.19$ (P= 0.02); SEE= 20%

- SET METs vs. exercise test duration
 - $R= 0.26$ (P= 0.01); SEE= 45%

- SET METs vs. 6-Minute Walk
 - $R= 0.09$ (P= 0.26); SEE= 23%
Conclusions

- Although significant, change in training METs during SET is poorly related to other common measures of exercise tolerance/capacity.
Conclusions

- Use of training METs as either a valid measure of change in a patient’s exercise capacity (or program performance) warrants further study.